
1

Static Analysis of C Programs

Kestrel Technology
NASA Ames Research Center

Moffett Field, CA 94035

Guillaume Brat
brat@email.arc.nasa.gov

Arnaud Venet
venet@email.arc.nasa.gov

Agenda

• Motivation
• Introduction to Static Analysis

– Definition
– Defect classes
– Applicability issues
– Specialization
– Analysis of MPF

• C Global Surveyor
– Fact sheet
– CGS phases
– Example

• Conclusions

2

A float overflow causes the crash of Ariane 501

A flag badly reset caused Mars Polar Lander to crash on Mars

I shouldn’t have turned
off the engine so soon…

Motivation

Cost of Losing Missions

• Mars Polar Lander: > $150M
– Development + Operations: $120M
– Deep Space 2 probes: $30M

• Mars Climate Orbiter: ~$85M
– Development: $85M
– Operations: $5M

• Mars Surveyor 98 (MPL + MCO) $328M
– Development: $193M
– Launch: $92M
– Operations: $43M

• Ariane 501: > $500M
– Investment over 10 years: $7B
– Payload value: $500M

3

Static Analysis

• Static progam analysis consists of
automatically discovering properties of a
program that hold for all possible
execution paths of the program

• Static analysis is not
– Testing: manually checking a property for

some execution paths
– Model checking: automatically checking a

property for all execution paths

Static Analysis

Static analysis offers compile-time techniques for predicting
Conservative, and computable, approximations to the set of values

arising dynamically at run-time when executing the program

the analysis is done
without executing the program

all possible values
(and more) are computed

C Global Surveyor uses abstract interpretation techniques
to extract a conservative system of semantic equations
which can be resolved using lattice theory techniques
to obtain numerical invariants for each program point

4

Is Static Analysis Useful?

• Optimizing compilers
• Program understanding
• Semantic preprocessing:

– Model checking
– Automated test generation

• Program verification
– Discovering errors without executing the

programs

Program Verification

• Check that every operation of a program
will never cause an error (division by zero,
buffer overrun, deadlock, etc.)

• Example:
int a[1000];

for (i = 0; i < 1000; i++) {

a[i] = … ; // 0 <= i <= 999

}

a[i] = … ; // i = 1000;buffer overrun

safe operation

5

Defect Classes

• Static analysis is well-suited for catching
runtime errors
– Array-out-bound accesses
– Un-initialized variables/pointers
– Overflow/Underflow
– Invalid arithmetic operations

• Also for program understanding
– Data dependences
– Control dependences
– Slicing
– Call graphs

Defect Classes for DS1

• Defect classes for Deep Space One:
– Concurrency: race conditions, deadlocks
– Misuse: array out-of-bound, pointer mis-

assignments
– Initialization: no value, incorrect value
– Assignment: wrong value, type mismatch
– Computation: wrong equation
– Undefined Ops: FP errors (tan(90)), arithmetic

(division by zero)
– Omission: case/switch clauses without defaults
– Scoping Confusion: global/local, static/dynamic
– Argument Mismatches: missing args, too many

args, wrong types, uninitialized args
– Finiteness: underflow, overflow

6

Issue 1: Incompleteness

• Discovering a sufficient set of properties
(e.g., numerical invariants) for checking
every operation of a program is an
undecidable problem!

• False positives: operations that are safe
in reality but which cannot be decided safe
or unsafe from the properties inferred by
static analysis.

Issue 2: Precision

• Precision: number of program operations
that can be decided safe or unsafe by an
analyzer
– Precision and computational complexity are

strongly related
– Tradeoff precision/efficiency: limit in the

average precision and scalability of a given
analyzer

– Greater precision and scalability is achieved
through specialization

7

Specialization

• Tailoring the analyzer algorithms for a specific
class of programs
– flight control systems
– digital signal processing, …

• CGS is specialized for the MPF s/w family
• Precision and scalability is guaranteed for this

class of programs only
– However, CGS works for every C program
– But precisision (and scalability) might not be as good

for every C program as for MPF-based s/w

Practical Static Analysis

PolySpace
C-Verifier

C Global Surveyor
(NASA Ames)

DAEDALUS

Coverity

Scalability (KLOC)

Precision

1000

500

50

80% 95%

GENERAL-PURPOSE
ANALYZERS

SPECIALIZED
ANALYZERS

8

Analysis of MPF

• Analyzed 3 modules (~20KLoc each) of C code from
the MPF flight software with PolySpace

• 80 % Precision
– 80% checks have been classified (correct or incorrect) with

certainty
– 20% warnings: need to be covered by conventional testing

• Found 2 certain errors in 30 minutes
– But, average run is 12 hours
– Average time spent manually analyzing RTE is 0.5 hours

• CGS analyzes all 140 KLoc of MPF in 1.5 hours with an
80% precision
– Some array bounds are not know by CGS because they are

passed dynamically in messages

Analysis of DS1

Polyspace:
analyzing 20-40 KLoc modules

took 8-12 hours
with an 80% precision

C Global Surveyor:
analyzing all 280 KLoc of DS1

took 2-3 hours
with a 90% precision

9

CGS fact sheet
• Static analyzer for finding runtime errors in C programs

– Out-of-bound array accesses
– Non-initialized variables
– De-referencing null pointers
– Tested on MPF and DS1 flight software systems

• Developed (20 KLoc of C) at NASA Ames in ASE group
– A. Venet: arnaud@email.arc.nasa.gov
– G. Brat: brat@email.arc.nasa.gov

• Runs on Linux and Solaris platforms
– RedHat Linux 2.4
– SUN Solaris 2.8

• Analysis can be distributed over several CPUs
– Using PVM distribution system

• Results available using SQL queries
– To the PostgreSQL database
– Browser-based graphical interface

Example

Main () {
int i,j;
volatile k;

for (i=0; i<8; i++) {
for (j=0; j<I; j++) {

k++;
}

}
return;

}

dbm_ex.c

10

Setting up Analysis

• Creating a database
– initdb cgsDB

• Starting the database in a separate shell
– postmaster –i –D cgsDB

• Starting the PVM distribution system
– pvm conf
– Where conf lists all available machines

• Go to source directory: say src/
• Creating the intermediate form

– cgsfe dbm_ex.c
– The file dbm_ex.cil is created in src/CGS/

Initialization

• First, CGS reads the CIL files and prepare
for the analysis
– cgs init CGS/dbm_ex.cil

• In the database, one can see file and
function tables:
– psql src

– select * from file_table;

– select * from function_table;

11

Building Equations

• The second of step of CGS consists of
building the semantic equations
abstracting the behavior of the program:
– cgs build <options>

• This creates a table of equations in the
database
– Local numerical invariants available in DB
– select * from num_inv_table where
function=<name>;

Bootstraping

• This phase builds an abstract graph of the
memory usage in the C program
– cgs bootstrap <option>

• In the database the following information is
now available:
– Call graph
– Memory graph, e.g., which global pointers

points to what memory cell

12

Solving the Equations

• The next step is to solve the equations
using the pointer analysis done in the
previous phase
– cgs solve <options>

• The following information is now available
in the database:
– Pointer table
– All numerical invariants for all program points

ABC Analysis

• The only currently available analysis is the one
checking the out-of-bound array accesses
– cgs abc

• Results are available in the database
– select * from abc_result_table;

– Results are coded:
• G for green: the access is correct
• R for red: the access is incorrect
• O for orange: the access may be incorrect
• U for unreachable: dead code

13

Analysis Script for MPF

• cgs init CGS/*.cil (62s with eight 2.2MHz CPUs)
• cgs build –I –e –m Heap_alloc:2 –m IpcQ_Create:? –m

BuggerMgr_alloc:? –s int-in-mem (527s)
• cgs bootstrap –c –k 3 –s taskSpawn:5 (445s)
• cgs solve –c –f –n (892s)
• cgs solve –c –b (471s)
• cgs solve –c –f –n (857s)
• cgs abc (510s) => roughly 1 hour for 60% precision
• cgs solve –c –b (526s)
• cgs solve –c –f –n (848s)
• cgs abc (503s) => roughly ½ hour for 80% precision

Conclusions

• Static analysis tools can be used to verify the absence of runtime
errors in NASA code
– No need for input test cases
– Complete coverage of all data accesses (pointer aliasing) and execution

paths
• Static analysis works well for errors such as

– Out-of-bound array accesses
– Un-initialized variables
– De-references of null pointers
– Some invalid arithmetic operations

• We have built a scalable, yet precise, static analyzer for C programs
– Tested on MPF (140KLoc) and DS1 (280 KLoc)
– Next test: MER (650 KLoc) and other NASA mission code
– Available on Linux and Solaris platforms

• We plan on developing a static analyzer for MDS code
– Will work for a simplified version of C++
– Tentative availability date: 2005

